Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Hong-Tao Mu, ${ }^{*}$ He-Yang Li, Hai-Bin Song and Wen-Bin Chen

State Key Laboratory and Institute of ElementoOrganic Chemistry, Nankai University, Tianjin, Weijin Road No. 94, Tianjin, People's Republic of China

Correspondence e-mail:
muhongtao@mail.china.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.034$
$w R$ factor $=0.087$
Data-to-parameter ratio $=6.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-Hydroxy- $\mathbf{2}^{\prime}$-oxo- $1,2,3,3 a, 8,8 a, 1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}-$ decahydrospiro[cyclopenta[a]indene-3,1'-naphthalen]-8-yl acetate

The title compound, $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4}$, contains two crystallographically independent molecules in the asymmetric unit. In both molecules, the indan ring system is almost planar, and the cyclopentane and cyclohexanone rings adopt distorted envelope conformations. In the crystal structure, the molecules exist as $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonded dimers.

Comment

The natural enediyne antitumor antibiotic neocarzinostatin (NCS-chrom) can induce highly efficient site-specific strand cleavage at either single- or two-base bulge-containing nucleic acids depending on the particular mode of activation of the drug (Williams \& Goldberg, 1988; Kappen \& Goldberg, 1993; Xi, Mao \& Goldberg, 1999). General-base post-activated neocarzinostatin chromophore (NCSi-gb) (Hensens et al., 1994) can bind to bulged DNA (Yang et al., 1995). During the preparation of biomimics of NCSi-gb, the title compound, (I), an exo spiroalcohol, was obtained as a by-product. We report here the crystal structure of (I).

(I)

The molecules of (I) crystallize as an enantiomeric pair in the asymmetric unit of a non-centrosymmetric space group (Fig. 1). The corresponding bond distances and angles in this enantiomeric pair agree with each other (Table 1). In both molecules, the cyclopentane and cyclohexanone rings adopt distorted envelope conformations. The indan ring system is almost planar and the acetate group is twisted away from it by $56.6(1)^{\circ}$ in one of the independent molecules and $56.2(1)^{\circ}$ in the other. In the crystal structure, the independent molecules are linked by $\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O}^{\mathrm{i}}$ and $\mathrm{O} 8-\mathrm{H} 8 \cdots \mathrm{O} 3^{\text {ii }}$ hydrogen bonds [symmetry codes are given in Table 2] to form a dimer (Fig. 2).

Experimental

Compound (I) was synthesized as a by-product of base-induced spiroaldolization of the corresponding ketoaldehyde according to the reported procedure of Xi, Jones et al. (1999) and Xi et al. (2002).
Figure 1

The asymmetric unit of (I), showing 30\% probability displacement ellipsoids and the atom-numbering scheme.

Part of the crystal packing of (I), viewed down the b axis. Only H atoms involved in hydrogen bonding (dashed lines) are shown.

Single crystals of (I) suitable for X-ray diffraction were obtained by recrystallization from methanol.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{4} \\
& M_{r}=362.41 \\
& \text { Monoclinic, Pc } \\
& a=10.949(4) \AA \\
& b=9.344(3) \AA \\
& c=18.961(5) \AA \\
& \beta=109.154(16)^{\circ} \\
& V=1832.5(10) \AA^{\circ} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.970, T_{\text {max }}=0.979$
9262 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.087$
$S=1.06$
3227 reflections
491 parameters
H-atom parameters constrained
$D_{x}=1.314 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 845 reflections
$\theta=2.9-25.9^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colorless
$0.30 \times 0.28 \times 0.24 \mathrm{~mm}$

3227 independent reflections
2702 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-11 \rightarrow 13$
$k=-11 \rightarrow 9$
$l=-22 \rightarrow 12$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0469 P)^{2}\right. \\
& +0.27 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.14 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

O1-C22	$1.342(4)$	O5-C45	$1.329(4)$
O1-C21	$1.462(4)$	O5-C44	$1.465(4)$
O2-C22	$1.200(5)$	O6-C45	$1.210(5)$
O3-C9	$1.225(4)$	O7-C32	$1.211(4)$
O4-C11	$1.419(4)$	O8-C34	$1.421(4)$
C9-C10-C1	$112.9(3)$	C24-C33-C32	$112.8(3)$
C9-C10-C11	$105.7(2)$	C24-C33-C37	$111.9(2)$
C1-C10-C11	$113.2(2)$	C32-C33-C37	$112.3(2)$
C9-C10-C14	$112.9(2)$	C24-C33-C34	$113.1(2)$
C1-C10-C14	$111.3(2)$	C32-C33-C34	$106.1(2)$
C11-C10-C14	$100.1(2)$	C37-C33-C34	$99.8(2)$
O4-C11-C12	$115.7(3)$	O8-C34-C35	$115.7(3)$
O4-C11-C10	$111.3(3)$	O8-C34-C33	$112.4(3)$
C12-C11-C10	$105.3(3)$	C35-C34-C33	$105.2(3)$
C12-C13-C21	$117.9(3)$	C35-C36-C44	$117.8(3)$
C12-C13-C14	$106.4(2)$	C35-C36-C37	$105.8(2)$
C21-C13-C14	$106.1(2)$	C44-C36-C37	$106.3(3)$
C15-C14-C13	$105.0(2)$	C38-C37-C36	$104.8(2)$
C15-C14-C10	$117.4(2)$	C38-C37-C33	$117.9(2)$
C13-C14-C10	$107.2(2)$	C36-C37-C33	$107.3(2)$

Table 2
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
${\text { O4-H4 } \cdots{ }^{-} \mathrm{O}^{\text {i }}}^{\text {i }}$	0.82	2.09	$2.891(4)$	165
${\text { O8-H8 } \cdots \mathrm{OB}^{\text {ii }}}^{2}$	0.82	2.18	$2.994(3)$	177

Symmetry codes: (i) $x,-y+1, z-\frac{1}{2}$; (ii) $x,-y+1, z+\frac{1}{2}$.

The H atoms were placed in idealized positions and allowed to ride on their parent atoms, with $\mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$, and with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}\left(\mathrm{O}, \mathrm{C}_{\text {methyl }}\right)$ and $1.2 U_{\text {eq }}(\mathrm{C})$. Rotating group refinement was used for the hydroxy and methyl groups. Friedel pairs were merged before the final refinement because of the absence of significant anomalous scattering effects.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

The authors thank the National Natural Science Foundation of China (grant Nos. 20272029 and 20432010), the Natural Science Foundation of Tianjin (grant No. 013616311), the Ministry of Science and Technology (grant No. 2003CB114403) and the Ministry of Education of China for financial support.

References

Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Hensens, O. D., Chin, D.-H., Stassinopoulos, A., Zink, D. L., Kappen, L. S. \& Goldberg, I. H. (1994). Proc. Natl Acad. Sci. USA, 91, 4534-4538.
Kappen, L. S. \& Goldberg, I. H. (1993). Biochemistry, 32, 13138-13145.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Williams, L. D. \& Goldberg, I. H. (1988). Biochemistry, 27, 3004-3011.

organic papers

Xi, Z., Hwang, G.-S., Goldberg, I. H., Harris, J. L., Pennington, W. T., Fouad, F. S., Qabaja, G., Wright, J. M. \& Jones, G. B. (2002). Chem. Biol. 9, 925-931. Xi, Z., Jones, G. B., Qabaja, G., Wright, J., Johnson, F. S. \& Goldberg, I. H. (1999). Org. Lett. 1, 1375-1377.

Xi, Z., Mao, Q. K. \& Goldberg, I. H. (1999). Biochemistry, 38, 4342 4354.

Yang, C. F., Stassinopoulos, A. \& Goldberg, I. H. (1995). Biochemistry, 34, 2267-2275.

